
Web Application Framework Design
Document

Andre Michel Gauthier, Gauthier Services Limited
<nomad@gserv.co.uk>

Copyright © 2002 Gauthier Services Limited

Revision History
Revision 0.5 25 April 2002

Initial Draft

The Web Application Framework is an aim to provide an easy to use tool set to develop scal-
able Web based applications that are easy to develop and maintain.

The approach has been to place function before form and to enable developers to build all the
required functionality of an application and then customise the front end using simple tem-
plates. Applications can be built from small simple components providing direct access to
database functions and/or providing output routines. Simple components can be linked togeth-
er to produce complex behavior required of an application.

Table of Contents
Introduction ... 1
Features .. 2
Technical ... 3

Data Interaction Layer ... 3
Component Linking ... 3
Display Layer ... 3

Demo Applications .. 4
View Manager .. 4
Intranet System ... 4
Project Manager .. 4

Deployment ... 4
Single Site Install .. 4
Multi-Site Install ... 5

Future Plans ... 5
Glossary .. 5

Introduction
The web application framework has been designed to provide an extensible framework for rapid web applica-
tion development. The aim has been to provide a means of developing applications by placing function before
form to enable the rapid deployment of workable solutions in the quickest time possible. The developed applica-
tion can then be tweaked using an output templating layer to create the desired appearance once the required
features have been implemented.

Many of the current systems for developing web based applications (e.g. ASP, JSP and other web scripting lan-
guages) are based on a two tier architecture where a back end database is accessed for information by a server
processed script which then presents the results to the end user. Two tier architectures tend to mix form and
function requiring developers to code the business logic and display logic concurrently. This mix also makes
maintenance of the code rather more difficult as changes to form can affect function and vice versa. In an at-
tempt to address this concern three tier architectures (e.g. EJBs) have been developed placing the business logic
in an abstract container and then allowing the display logic to be developed separately and call functions of the

1

intermediate tier. The added code complexity of three tier architectures often extends the development time and
costs for a web application. The intermediate tier will also require some container application to hold the busi-
ness logic adding additional cost and complexity to the deployed application. Three tier architectures also tend
to require components to be developed in a high level language requiring a further investment in skills over
simple scripting languages (which are still required for the display layer).

The web application framework enables developers to build applications out of simple components and then use
a simple template language to produce the display. The aim has been to take the best aspects of two and three
tier architectures and then reduce the complexity of application development as much as possible whilst retain-
ing flexibility. Based on a two tier architecture (web server front end and database at the back end) the business
logic and display logic have been clearly separated in the first tier (web server). Although other applications
have been developed to provide this separation in the form of display template routines they can still only be ac-
cessed through the scripting language. This is not enforced in the scripting languages so developers can (and
probably do) sidestep the separation. In the web application framework the separation is performed by the
framework and can't be bypassed providing a strict environment to develop applications.

Features
Enhanced Two Tier Architecture. Providing a clear separation between the data layer and the interaction layer
without the added complexity of three tier systems.

Connection Pooling. Enabling rapid response to requests by reducing the need to renegotiate connections with
the database. In multi site installations this can also prevent high levels of activity on one site from depriving
other sites of access.

Multiple database configurations. The framework supports multiple database configurations allowing one
consistent application front end to access many different back-end databases.

Simple component architecture. Allows the development and debugging of applications one step at a time and
facilitates easy customization of applications to end-user requirements post installation.

Simple development. Development of applications has been simplified by removing the need for any additional
Java development. Entire applications can be created through the database configuration and creation of simple
SQL templates to interact with the database.

Complex Behavior possible. Simple components can be chained together to produce complex behavior even
interacting with different databases at each stage.

Configuration Database. All of the configuration is held in a database providing centralised configuration
management. Database replication enables configuration to be maintained centrally and propagated to many
sites transparently.

Web based interface. The View Manager Application provides a Web interface which can be used to develop
and maintain applications remotely.

Wide range of supported databases. The Web application framework leverages on standard JDBC drivers
providing access to a wide range of backend databases.

Portable Java Servlets. The framework has been built using Java Servlets which can be installed in many off
the shelf web servers without the need for complex and expensive application servers.

Pull down Menus. Values in the database can be easily referenced to create pull down menus to ease user inter-
action.

Simple Templating system. Someone with basic knowledge of HTML can easily add the required additional
tags into their code to create customised output without affecting the underlying business logic.

Abstracted Security. The access control is handled by the framework and therefore does not rely on any access
control to be present in web server on which the system is to be deployed.

View Level Access Control. Users can be granted access only to specific views based on the access groups
which they are members of.

WAF Design Doc

2

Record Level Access. User and group id details can be used to restrict access to specific records within a view
providing even greater control on who can access/modify data.

Technical
The Design has been broken down into three Layers: Data Interaction, Component Linking and Display. This
strict delineation allows development of each layer to be focused on separately and if desired by separate de-
velopers.

Data Interaction Layer
The data interaction layer can prepare a number of different view types to process and display. The simplest is
the input view which simply specified fields to be used in a form to get information from the user. A rudiment-
ary view type for editing text files on the web server is also available. The most utilised view types are results
and update views which both use SQL templates to either update the database or select records from the data-
base.

The data interaction layer utilises a template processor to parse an SQL template. Special tags similar to HTML
markup are substituted for required values in the SQL and then this is run on the database server. The templates
allow for default values to be placed into the SQL output when no data is input by the user. An example of an
SQL template is Example 1. Each %prop tag specifies the name of a variable from the form data posted to the
web server the default attribute specifies what value should be substituted in the absence of input. The suffix
and prefix attributes specify additional text that should be placed before and after the substituted value. If no
value is present and no default is specified then nothing is substituted.

Example 1. Example SQL template.

select * from announcement
where
title like <%prop name="title" prefix="'" suffix="%'" default="">
<%prop name="announcementid" prefix="and announcementid=">
order by posted desc

Component Linking
There are three ways in which views can be linked to other view providing a flexible means to construct an ap-
plication. Views can be linked either by a standard link, an in-line link or a chained link and there is no real limit
to the number or combination of these link types.

Standard Link. Standard links provide a means to submit data collected or displayed on one view to another
view. The most common example is to use a standard link to link to a view which updates that record. These
links generate submit buttons on the HTML form.

In-line Link. In-line Links work in a similar way to standard links as data collected in one view is submitted to
another view but in this case the results are displayed in the current view. A simple example of this would be to
display all the groups a user is a member of when you view the users data.

Chained Link. Chained links allow for data submitted to one view to be passed on to another view once this
view has finished processing. This can be used to update data in more than one database at a time, re-display a
record after updating it or displaying a new record after inserting. This last example utilises the ability of update
views to interrogate the database and obtain the unique record identifier of a newly inserted record. This feature
can also be used to interrogate the database for other values such as the number of records remaining after a de-
lete.

Display Layer

WAF Design Doc

3

The display layer uses the template engine to parse simple headers and footers to enable easy generation of a
consistent front end to your application. There are default output methods which will then present the results of
your data interaction as a HTML form which can then be modified and/or used as input to another view. The be-
havior of the default display engine can be tweaked allowing the type of form element to be changed as re-
quired. Most form elements can be created in this way including text boxes, password fields, large text areas,
hidden fields and pull down menus. Any linked views are also displayed by the default routines.The default dis-
play routines can optionally be replaced with even more customised HTML templates which can also make use
of form elements generated by the default display routines. E.g. the pull down menus and any linked views.

Demo Applications
As a proof of concept and a test of the frameworks capabilities a number of demonstration applications have
been developed. These applications include a simple intranet system comprising of an announcements board, a
discussion board and a company directory.

View Manager
The View Manager was developed to provide a Web interface to the Web Application Framework. All compon-
ents of the framework can be created modified and deleted via a simple to use front-end including the editing of
SQL and HTML templates.

Intranet System
The intranet system was developed to provide some commonly required applications that could be used to kick
start the development of an integrated company intranet system. Additional applications can be added into the
system to provide a unified working environment.

Project Manager
The project manager was developed as a simple project manager allowing projects to be created tasks created
and resources assigned to tasks. Expenses can also be filed against projects and budgets can be calculated based
on resource costs and expenses incurred by a project.

The Project manager has also been linked to the discussion board component of the intranet system enabling ac-
cess to discussions related to specific projects.

Deployment
There are various possible ways of deploying the framework depending on your requirements.

Single Site Install
A simple single site install is the most basic deployment of the Web Application Framework (Figure 1). All user
requests are handled by the web server which verifies the user, looks up the view configuration from the data-
base server. The view configuration is used to establish which SQL templates to use. The web server then parses
the SQL template and submits it to the Database. The database will then process the request and send a response
back to the web server. The Web server will then process this response performing any link operations and ob-
taining further responses from the Database if required. Once a complete set of data is collected the data is fed
back to the user.

Variations on this deployment could involve the users being based at many sites and accessing the web server
using secure HTTPS communication over the internet. Client certificates could also be used if the web server
supported it to prevent any unauthorised access. In order to simplify the deployment the database and web serv-
er may also reside on the same physical machine although there are some security implications for this if the
web server is to be visible on the internet. There may also be more than one database server present and the web
server will determine which database connection to use when it loads the configuration for the view. The data-
bases may also be of different types i.e. Oracle, SQL Server or PostgreSQL.

WAF Design Doc

4

Multi-Site Install
A multi-site install can be done a number of ways one of which is outlined in (Figure 2). In this case these data-
bases may be of heterogenous nature with each web server able to communicate with the other sites databases
(preferably through a VPN over the internet or using SSH port forwarding). This allows the same consistent in-
terface to be available to all sites and for all sites to be able to access each other's data when required. As their
own database is local, a site would not be reliant on high bandwidth connection to the internet for the majority
of it's functions.

If all sites need access to the same data which may not need updating often then one database could be con-
figured as the master database and the others as slaves. The framework could then be set up to read data from
the local slave database and only write to the master database. The master would then replicate any updates
down to the slaves. This would provide the same functionality of a single site install that could be accessed from
may sites using HTTPS but local data reads should be significantly faster and the load on the master database
lower.

Future Plans
Due to the current trend for greater and greater integration of information systems into larger systems it has be-
come necessary to consider the ability to integrate the framework into larger systems. The rise of XML as a
mechanism for communication between systems has been gathering pace over the last few years and seems to
be the way that the industry will go.

Within the current framework it is possible to write output templates that could output data as an XML docu-
ment. Future extensions to the framework will be to provide default XML output methods for views as there
currently exists for HTML output. Due to the component architecture that has been employed throughout the de-
velopment of the framework this will be a seamless upgrade that would allow all existing views on the data to
be output optionally as XML with little or no additional development of an application.

The next phase of development will be to provide an additional request handling component that could process
XML requests and forward them on to the underlying view manager component to produce an XML request.
There are a number of currently emerging technologies for integrating applications that handle XML requests
and responses (e.g. SOAP) that can provide a larger framework for these applications to work within. Where
possible compatibility with as many of these systems as possible will be maintained. The ability to handle XML
requests will also enable easy integration with many existing e-hub application servers on the market e.g BEA
Tuxedo.

Glossary
API

Application Programmer Interface. A structured way of forcing program-
mers to write code that can communicate with some other code.

ASP
Application Server Pages. A web scripting system produced by Microsoft.

Client Certificates
Client Certificates. A mechanism for a user to be validated by a certificate
that has been signed by a certificate authority. If a user does not have a valid
certificate signed by the correct authority then access can be denied.

E-Hub
E-Hub. A large scale application server designed to handle transactions and
requests for data over a large number of different resources.

EJB
Enterprise Java Beans. A set of programming APIs to enable creation of
Java components that can be distributed across a network developed by by
Sun Microsystems.
See Also API.

WAF Design Doc

5

HTML
Hyper-Text Markup Language. The most common way of presenting in-
formation over the Internet using simple tags to convey formating informa-
tion.

HTTPS
Hyper-Text Transfer Protocol (Secure). A method of transferring data
between a web server and web browser that utilises public private key en-
cryption.
See Also Public Private Key Encryption.

JDBC
Java DataBase Connectivity. An API for communicating with databases.
There are a large number of database servers that have drivers which sup-
port this API.
See Also API.

JSP
Java Server Pages. A web scripting system produced by Sun Microsys-
tems.

Public Private Key Encryption
Public Private Key Encryption. Public Private Key Encryption is a meth-
od of encrypting information in such a way as to only enable one person to
read the data. A public key and a private key are generated. Any data en-
crypted by the public key can only be decrypted by the private key and vice
verse. If A wants to communicate with B then A would encrypt the data
with B's public key (which any one can have) and also with A's Private key.
When B receives this data he can use A's public key to verify that the data
has come from A and then use B's private key to actually read the data. As
no one else should have B's private key then the data should not be intercep-
ted.

SQL
Structured Query Language. The standard query language used in the ma-
jority of database systems

SSH
Secure SHell. Secure shell is a means of encrypting specific traffic between
sites using public private key encryption. It is normally used to provide an
encrypted remote login to machines with sensitive data on. The port for-
warding facility allows for any specific traffic intended for a machine (e.g.
just database access) to be encrypted between the two sites.
See Also Public Private Key Encryption.

VPN
Virtual Private Network. A system usually configured using specialised
firewall routers and public private key encryption to enable sites to be linked
securely over the internet.
See Also Public Private Key Encryption.

XML
eXtensible Markup Language. A mechanism for marking up data usually
indicating the meaning of the data.

WAF Design Doc

6

	Web Application Framework Design Document
	Table of Contents
	Introduction
	Features
	Technical
	Data Interaction Layer
	Component Linking
	Display Layer

	Demo Applications
	View Manager
	Intranet System
	Project Manager

	Deployment
	Single Site Install
	Multi-Site Install

	Future Plans
	Glossary

